Понятие, формула дисконтирования. Таблица дисконтирования — как ей пользоваться для расчета дисконтированной стоимости

discount_mЗнаете ли вы, что означает дисконтирование? Если вы читаете эту статью, значит, вы уже слышали это слово. И если вы пока не поняли до конца, что это такое, то эта статья для вас. Даже если вы не собираетесь сдавать экзамен Дипифр, а просто хотите разобраться в этом вопросе, прочитав эту статью, вы сможете прояснить для себя понятие дисконтирования.

Данная статья доступным языком рассказывает о том, что такое дисконтирование. На простых примерах в ней показана техника расчета дисконтированной стоимости. Вы узнаете, что такое фактор дисконтирования и научитесь пользоваться таблицами коэффициентов дисконтирования.

money is gold

Понятие и формула дисконтирования доступным языком

Чтобы проще было объяснить понятие дисконтирования, начнём с другого конца. А точнее, возьмем пример из жизни, знакомый каждому.

Пример 1. Представьте, что вы пришли в банк и решили сделать вклад в размере 1000 долларов. Ваши 1000 долларов, положенные в банк сегодня, при банковской ставке 10% будут стоить 1100 долларов завтра: нынешние 1000 долларов + проценты по вкладу 100 (=1000*10%). Итого через год вы сможете снять 1100 долларов. Если выразить этот результат через простую математическую формулу, то получим: $1000*(1+10%) или $1000*(1,10) = $1100.

Через два года нынешние 1000 долларов превратятся в $1210 ($1000 плюс проценты за первый год $100 плюс проценты за второй год $110=1100*10%). Общая формула приращения вклада за два года: (1000*1,10)*1,10 = 1210

С течением времени величина вклада будет расти и дальше. Чтобы узнать, какая сумма вам причитается от банка через год, два и т.д., надо сумму вклада умножить на множитель: (1+R)n

  • где R – ставка процента, выраженная в долях от единицы (10% = 0,1)
  • N – число лет

В данном примере 1000*(1,10)2 = 1210. Из формулы очевидно (да и из жизни тоже), что сумма вклада через два года зависит от банковской ставки процента. Чем она больше, тем быстрее растет вклад. Если бы ставка банковского процента была другой, например, 12%, то через два года вы бы смогли снять с вклада  примерно 1250 долларов, а если считать более точно 1000*(1,12)2 = 1254.4

Таким способом можно рассчитать величину вашего вклада в любой момент времени в будущем. Расчет будущей стоимости денег в английском языке называется «compounding». Данный термин на русский язык переводят как «наращение» или калькой с английского как «компаундирование». Лично мне больше нравится перевод данного слова как «приращение» или «прирост».

Смысл понятен – с течением времени денежный вклад увеличивается за счет приращения (прироста) ежегодными процентами. На этом, собственно говоря, построена вся банковская система современной (капиталистической) модели мироустройства, в которой время – это деньги.

time value of money

Теперь давайте посмотрим на данный пример с другого конца. Допустим, вам нужно отдать долг своему приятелю, а именно: через два года заплатить ему $1210. Вместо этого вы можете отдать ему $1000 сегодня, а ваш приятель положит эту сумму в банк под годовую ставку 10% и через два года снимет с банковского вклада ровно необходимую сумму $1210. То есть эти два денежных потока: $1000 сегодня и $1210 через два года — эквивалентны друг другу. Не важно, что выберет ваш приятель – это две равноценные возможности.

ПРИМЕР 2. Допустим, через два года вам надо сделать платёж в сумме $1500. Чему эта сумма будет равноценна сегодня?

 

приведенная стоимость этоЧтобы рассчитать сегодняшнюю стоимость, нужно идти от обратного: 1500 долларов разделить на (1,10)2 , что будет равно примерно 1240 долларам. Этот процесс и называется дисконтированием.

Если говорить простым языком, то дисконтирование – это определение сегодняшней стоимости будущей денежной суммы (или если говорить более правильно, будущего денежного потока).

Если вы хотите выяснить, сколько будет стоить сегодня сумма денег, которую вы или получите, или планируете потратить в будущем, то вам надо продисконтировать эту будущую сумму по заданной ставке процента. Эта ставка называется «ставкой дисконтирования». В последнем примере ставка дисконтирования равна 10%, 1500 долларов – это сумма платежа (денежного оттока) через 2 года, а 1240 долларов – это и есть так называемая дисконтированная стоимость будущего денежного потока. В английском языке существуют специальные термины для обозначения сегодняшней (дисконтированной) и будущей стоимости: future value (FV) и present value (PV). В примере выше $1500 — это будущая стоимость FV, а $1240 – это текущая стоимость PV.

Когда мы дисконтируем — мы идём от будущего к сегодняшнему дню.

Дисконтирование

формула дисконтирования

Когда мы наращиваем — мы идём от сегодняшнего дня в будущее.

Наращение

наращение

 

Формула для расчета дисконтированной стоимости или формула дисконтирования для данного примера имеет вид: 1500 * 1/(1+R)n = 1240.

Математическая   формула дисконтирования в общем случае будет такая: FV * 1/(1+R)n = PV. Обычно её записывают в таком виде:

PV = FV * 1/(1+R)n

Коэффициент, на который умножается будущая стоимость 1/(1+R)n называется фактором дисконтирования от английского слова factor в значении «коэффициент, множитель».

В данной формуле дисконтирования: R – ставка процента, N – число лет от даты в будущем до текущего момента.

Таким образом:

  • Compounding или Приращение – это, когда вы идете от сегодняшней даты в будущее.
  • Discounting или Дисконтирование – это, когда вы идете из будущего к сегодняшнему дню.

Обе «процедуры» позволяют учесть эффект изменения стоимости денег с течением времени.

Конечно, все эти математические формулы сразу наводят тоску на обычного человека, но главное, запомнить суть. Дисконтирование – это когда вы хотите узнать сегодняшнюю стоимость будущей суммы денег (которую вам надо будет потратить или получить).

Надеюсь, что теперь, услышав фразу «понятие дисконтирования», вы сможете объяснить любому, что подразумевается под этим термином.

Приведенная стоимость – это дисконтированная стоимость?

В предыдущем разделе мы выяснили, что

Дисконтирование– это определение текущей стоимости будущих денежных потоков.

Не правда ли, в слове «дисконтирование» слышится слово «дисконт» или по-русски скидка? И действительно, если посмотреть на этимологию слова discount, то уже в 17 веке оно использовалось в значении «deduction for early payment», что означает «скидка за раннюю оплату». Уже тогда много лет назад люди учитывали временную стоимость денег. Таким образом, можно дать еще одно определение: дисконтирование – это расчет скидки за быструю оплату счетов. Эта «скидка» и является мерилом временной стоимости денег или time value of money.

Дисконтированная стоимость – это текущая стоимость будущего денежного потока (т.е. будущий платеж за вычетом «скидки» за быструю оплату). Ее еще называют приведенной стоимостью, от глагола «приводить». Говоря простыми словами, приведенная стоимость – это будущая денежная сумма, приведенная к текущему моменту.

Если быть точным, то дисконтированная и приведенная стоимость – это не абсолютные синонимы. Потому что приводить можно не только будущую стоимость к текущему моменту, но и текущую стоимость к какому-то моменту в будущем. Например, в самом первом примере можно сказать, что 1000 долларов, приведенные к будущему моменту (через два года) при ставке 10%  равны 1210 долларов. То есть, я хочу сказать, что приведенная стоимость – это более широкое понятие, чем дисконтированная стоимость.

Кстати, в английском языке такого термина (приведенная стоимость) нет. Это наше, чисто русское изобретение. В английском языке есть термин present value (текущая стоимость) и discounted cash flows (дисконтированные денежные потоки). А у нас есть термин приведенная стоимость, и он чаще всего используется именно в значении «дисконтированная» стоимость.

Таблица дисконтирования

Чуть выше я уже приводила формулу дисконтирования PV = FV * 1/(1+R)n, которую можно описать словами как:

Дисконтированная стоимость равна будущая стоимость, умноженная на некий множитель, который называется фактором дисконтирования.

Коэффициент дисконтирования 1/(1+R)n, как видно из самой формулы, зависит от ставки процента и количества периодов времени. Чтобы не вычислять его каждый раз по формуле дисконтирования, пользуются таблицей, показывающей значения коэффициента в зависимости от % ставки  и количества периодов времени. Иногда она называется «таблица дисконтирования», хотя это не совсем правильный термин. Это таблица коэффициентов дисконтирования, которые рассчитываются, как правило, с точностью до четвертого знака после запятой.

pv table

Пользоваться данной таблицей коэффициентов дисконтирования очень просто: если вы знаете ставку дисконтирования и число периодов, например, 10% и 5 лет, то на пересечении соответствующих столбцов находится нужный вам коэффициент.

Пример 3. Давайте разберем простой пример. Допустим, вам нужно выбрать между двумя вариантами:

  • А) получить 100,000 долларов сегодня
  • Б) или 150,000 долларов одной суммой ровно через 5 лет

Что выбрать?

Если вы знаете, что банковская ставка по 5-летним депозитам составляет 10%, то вы легко можете посчитать, чему равна сумма 150,000 долларов к получению через 5 лет, приведенная к текущему моменту.

Соответствующий коэффициент дисконтирования в таблице равен 0,6209 (ячейка на пересечении строки 5 лет и столбца 10%). 0,6209 означает, что 62,09 цента, полученные сегодня, равны 1 доллару к получению через 5 лет (при ставке 10%). Простая пропорция:

сегодня

через 5 лет

62,09 цента

$1

X?

150,000

Таким образом, $150,000*0,6209 = 93,135.

93,135 — это дисконтированная (приведенная) стоимость суммы $150,000 к получению через 5 лет.

Она меньше, чем 100,000 долларов сегодня. В данном случае, синица в руках действительно лучше, чем журавль в небе. Если мы возьмем 100,000 долларов сегодня, положим их на депозит в банке по 10% годовых, то через 5 лет мы получим: 100,000*1,10*1,10*1,10*1,10*1,10 = 100,000*(1,10)5  = 161,050 долларов. Это более выгодный вариант.

Чтобы упростить это вычисление (вычисление будущей стоимости при заданной сегодняшней стоимости), можно также воспользоваться таблицей коэффициентов. По аналогии с таблицей дисконтирования эту таблицу можно назвать таблицей коэффициентов приращения (наращения). Вы можете построить такую таблицу самостоятельно в Excele, если используете формулу для расчета коэффициента приращения:(1+R)n .

FV tableИз этой таблицы видно, что 1 доллар сегодня при ставке 10% через 5 лет будет стоить 1,6105 долларов.

С помощью такой таблицы легко будет посчитать, сколько денег нужно положить в банк сегодня, если вы хотите получить определенную сумму в будущем (не пополняя вклад). Чуть более сложная  ситуация возникает, когда вы хотите не только положить деньги на депозит сегодня, но и собираетесь каждый год добавлять определенную сумму к своему вкладу. Как это рассчитать, читайте в следующей статье. Она называется формула аннуитета.

Философское отступление для тех, кто дочитал до этого места

Дисконтирование базируется на знаменитом постулате «время — деньги». Если задуматься, то эта иллюстрация имеет очень глубокий смысл. Посадите яблоню сегодня, и через несколько лет ваша яблоня вырастет, и вы будете собирать яблоки в течение многих лет. А если сегодня вы не посадите яблоню, то в будущем яблок вы так и не попробуете.

Всё, что нам нужно – это решиться: посадить дерево, начать свое дело, стать на путь, ведущий к исполнению мечты. Чем раньше мы начнем действовать, тем больший урожай мы получим в конце пути. Нужно превращать время, отпущенное нам в нашей жизни, в результаты.

«Семена цветов, которые распустятся завтра, сажают сегодня». Так говорят китайцы.

Если вы мечтаете о чем-то, не слушайте тех, кто вас отговаривает или подвергает сомнению ваш будущий успех. Не ждите удачного стечения обстоятельств, начинайте как можно раньше. Превращайте время вашей жизни в результаты.

Большая таблица коэффициентов дисконтирования (открывается в новом окне):

big pv table

Вы можете прочитать другие статьи по теме Финансы:

1. Капитализация вклада — что это? Формула капитализации процентов: ежемесячно, ежедневно, непрерывно.
Рассчитать свой потенциальный доход по вкладу можно самостоятельно, не полагаясь на калькуляторы дохода, которые размещены на сайтах банковских учреждений. В этой статье на конкретных примерах показано, как рассчитать доход по вкладу с капитализацией процентов (ежеквартальной, ежемесячной) и как рассчитать эффективную ставку по вкладам с капитализацией.

2. Формула аннуитета. Вечная рента. Это надо знать каждому! (не для банкиров)
Вечная рента — это серия одинаковых платежей, которые продолжаются вечно. Такой вариант возможен, если, например, у вас есть вклад в банке, вы снимаете только ежегодные проценты, а основная сумма вклада остается нетронутой. Тогда, если ставка процента по вкладу не меняется, у вас будет так называемая вечная рента.

3. Формула расчета NPV инвестиционного проекта. Это просто.

Инвестировать — это значит вложить свободные финансовые ресурсы сегодня с целью получения стабильных денежных потоков в будущем. Как не ошибиться и не только вернуть вложенные средства, но еще и получить прибыль от инвестиций?

4. Внутренняя норма доходности. Формула расчета IRR инвестиционного проекта

В данной статье приведены не только формула и определение IRR, но есть примеры расчетов этого показателя (в Excel, графический) и интерпретации полученных результатов. Два примера из жизни, с которыми сталкивается каждый человек

5. Ставка дисконтирования для инвестиционного проекта. Это WACC — средневзвешенная стоимость капитала.

По своей сути ставка дисконтирования при анализе инвестиционных проектов — это ставка процента, по которой инвестор привлекает финансирование. Как ее рассчитать?

Самые интересные статьи по теме МСФО и Дипифр:

1. Консолидация — это контроль. МСФО IFRS 10 — это единая концепция контроля для любых объединений  бизнеса

2. Как сдать экзамен Дипифр со второго раза?

 Перейти на главную страницу

49 комментариев

  • Агаси:

    СПАСИБО АВТОРУ !!! ЗАМЕЧАТЕЛЬНО , А ГЛАВНОЕ ОЧЕН ВНЯТНО ВСЕ ПРЕДСТАВЛЕНО !!!

    [Ответить]

  • Владислав:

    Прекрасная статья. Полезная и красиво подана.

    [Ответить]

  • Елена:

    Спасибо за очень понятное объяснение! Сдавала дипифр 5 лет назад и все забыла. Но тут так все разложено, что уже не забуду)

    [Ответить]

  • Елена:

    ОГРОМНОЕ СПАСИБО! СЛОЖНОЕ ИЗЛОЖЕНО ДОХОДЧИВО И С ЛЮБОВЬЮ

    [Ответить]

  • Никита:

    Спасибо большое! На простом и понятном языке объяснили технарю всю эту жуткую экономику)

    [Ответить]

  • Антон:

    более доходчивого разъяснения не нашел!спасибо

    [Ответить]

  • Таня:

    Спасибо, на лекциях не поняла, а тут все понятно!

    [Ответить]

  • Ангелина:

    Большое спасибо! Очень доступно, понятно и кратко!

    [Ответить]

  • марина:

    Умничка, все грамотно изложено, побольше бы таких авторских статей

    [Ответить]

  • Я:

    я тоже прочитал, кажется понял, особенно понравилось про *Философское отступление*

    [Ответить]

  • Аня:

    Огромное спасибо! У вас талант объяснять. На первый взгляд сложные вещи становится простыми и доступными.

    [Ответить]

  • Владислав:

    Спасибо за доступное изложение материала, ничего лишнего.
    Согласен с предыдущим комментарием — у Вас талант!
    С уважением.

    [Ответить]

    expert

    Спасибо всем за добрые слова! Это вдохновляет на написание новых статей. Честно говоря, не ожидала, что статья про дисконтирование будет настолько популярной, и будет нравиться людям. Тем приятнее, что это так.

    [Ответить]

  • Olegra:

    Спасибо большое! Действительно очень доходчиво объяснили даже таким тугодумам как я)

    [Ответить]

  • Арсений:

    Я бы хотел присоединиться к выраженным благодарностям в адрес автора статьи! Очень доходчиво.

    [Ответить]

  • Елена:

    Спасибо Автору за статью. Очень все доходчиво написано и разъяснено. С удовольствием дочитала до конца. Спасибо большое.

    [Ответить]

  • Василий:

    Очень доступно и подробно написано, спасибо огромное, что помогли разобраться в этой не простой теме для технаря.

    [Ответить]

  • Владимир:

    Благодарю Автора за столь доступное описание. Молодчина, все понятно и доходчиво.

    [Ответить]

  • Жомарт:

    спасибо, понятно доступно, благодарю автора, все бытак.

    [Ответить]

  • Родион:

    Завалил экзамен по управлению проектом, потому что не понял что такое дисконтирование! Прочитал статью и все понял! Спасибо! Завтра иду на пересдачу, надеюсь сдам)

    [Ответить]

  • Виталий:

    Спасибо большое, уважаемый автор.
    Вы удивительно доступно и, в то же время, достаточно коротко изложили материал, передав в статье суть и природу дисконтирования, затронув, на мой взгляд, все базовые вопросы.

    [Ответить]

  • Альфира:

    Огромное спасибо за доходчивое объяснение материала!

    [Ответить]

  • Лена:

    Даже в университете не так доходчиво объясняют. Сдала госы (учусь на заочном отделении) благодаря вашим статьям! Спасибо вам!

    [Ответить]

  • Ксения:

    Спасибо большое за очень доходчивое объяснение!

    [Ответить]

  • Евгеныч:

    всё стало понятно, спасибо от души!!!

    [Ответить]

  • Айгуль:

    Спасибо автору, все так просто и понятно.

    [Ответить]

  • Михаил:

    Благодарю за статью, теперь буду частым гостем на вашем сайте!

    [Ответить]

  • Елена Л.:

    Спасибо огромное за такое доступное изложение данной темы. С уважением, Елена

    [Ответить]

  • Дмитрий:

    Огромное спасибо! Приятно читать

    [Ответить]

  • Татьяна:

    спасибо большое! Статья просто блеск. Очень красиво и понятно написано.

    [Ответить]

  • Виктор:

    Необходимо отметить, что в этих формулах время измеряется в единицах периода ставки дисконтирования

    [Ответить]

  • Гульмайраш:

    Спасибо за Ваш труд.

    [Ответить]

  • Алла:

    Выражаю Вам огромную благодарность за разъяснение для меня этой темы. Написано ясно, просто и доходчиво!!! Жду новых статей по финансовой граммотности. Хотелось бы знать, есть ли еще статьи, написанные Вами.

    [Ответить]

  • Юлия:

    Спасибо огромное! Объяснили доходчиво и, главное, интересно! Сохранила Ваш сайт в закладках

    [Ответить]

  • Татьяна:

    Автору огромнейшее спасибо!!! Все досконально разжёвано, что конечно же, в разы упрощает усвоение темы методов оценки экономической эффективности инвестиций.

    [Ответить]

  • Анна:

    Большущее спасибо автору! невероятная статья! Полгода билась с финансовым менеджментом, пока не нашла этот сайт

    [Ответить]

  • Лика:

    Уважаемый автор! У Вас талант просто объяснять сложное. Надеюсь, Вы преподаете в ВШЭ.

    [Ответить]

  • ThePopov:

    Милая автор. Вы и ваша статья прекрасны.

    [Ответить]

  • A:

    Автору велике дякую!

    [Ответить]

  • Вячеслав:

    Отличная статья! Респект. Спасибо автору. Все просто, доступно и с философским хорошим смыслом в конце 🙂
    Огонь!

    [Ответить]

  • Ольга:

    Спасибо! Все очень доступно написано! Читается легко и с пониманием!

    [Ответить]

  • Джавид:

    Сразу видно чть совестливый человек

    [Ответить]

  • Роман:

    Спасибо Огромное!!

    [Ответить]

  • Светлана:

    Огромное спасибо, очень познавательно)))

    [Ответить]

  • Анна:

    И от меня спасибо за то, что помогаете другим людям! Удачи Вам и всего наилучшего!

    [Ответить]

  • Асет:

    Пипец!!! А я голову ломал при написании бизнес-плана. Оказывается все просто. Спасибо. Очень доходчиво и интересно читать.

    [Ответить]

  • Rena:

    SPASIBOOOOOO

    [Ответить]

  • Александр:

    Спасибо автору статьи большое! Так понятно объяснено! Это невероятно важно — уметь объяснять, тем более на тексте. Не каждый это может, спасибо.

    [Ответить]

  • Игорь:

    Спасибо. Понятнее, чем на MBA

    [Ответить]

Комментировать

Подписка на новые статьи
«align=»absmiddle